629 research outputs found

    Integrated Circuits Based on 300 GHz fT Metamorphic HEMT Technology for Millimeter-Wave and Mixed-Signal Applications

    Get PDF
    Advanced circuits based on metamorphic HEMT (MHEMT)technologies on 4 ”GaAs substrates for both millimeter-wave,and mixed- signal applications are presented.Extrinsic cut-off frequencies of ft =293 GHz and fmax =337 GHz were achieved for a 70 nm gate length metamorphic HEMT echnology.The MMIC process obtains high yield on transistor and circuit level.Single-stage low-noise amplifiers demonstrate a small signal gain of 13 dB and a noise figure of 2.8 dB at 94 GHz.An amplifier MMIC developed for D-Band operation features a gain of 15 dB at 160 GHz.The achieved results are comparable to state- of-the-art InP-based HEMT technologies.In order to realize 80 Gbit/s digital circuits,a process with 100 nm gate length enhancement type HEMTs with a transit frequency of 200 GHz is used.Three metalization layers are available for interconnects.The parasitic capacitance of the interconnects is kept low by using BCB and plated air bridge technology.Based on this process,static and dynamic frequency dividers achieve a maximu toggle frequency of 70 GHz and 108 GHz,respectively

    Phase diagram of the random field Ising model on the Bethe lattice

    Get PDF
    The phase diagram of the random field Ising model on the Bethe lattice with a symmetric dichotomous random field is closely investigated with respect to the transition between the ferromagnetic and paramagnetic regime. Refining arguments of Bleher, Ruiz and Zagrebnov [J. Stat. Phys. 93, 33 (1998)] an exact upper bound for the existence of a unique paramagnetic phase is found which considerably improves the earlier results. Several numerical estimates of transition lines between a ferromagnetic and a paramagnetic regime are presented. The obtained results do not coincide with a lower bound for the onset of ferromagnetism proposed by Bruinsma [Phys. Rev. B 30, 289 (1984)]. If the latter one proves correct this would hint to a region of coexistence of stable ferromagnetic phases and a stable paramagnetic phase.Comment: Article has been condensed and reorganized; Figs 3,5,6 merged; Fig 4 omitted; Some discussion added at end of Sec. III; 9 pages, 5 figs, RevTeX4, AMSTe

    Convolution of multifractals and the local magnetization in a random field Ising chain

    Full text link
    The local magnetization in the one-dimensional random-field Ising model is essentially the sum of two effective fields with multifractal probability measure. The probability measure of the local magnetization is thus the convolution of two multifractals. In this paper we prove relations between the multifractal properties of two measures and the multifractal properties of their convolution. The pointwise dimension at the boundary of the support of the convolution is the sum of the pointwise dimensions at the boundary of the support of the convoluted measures and the generalized box dimensions of the convolution are bounded from above by the sum of the generalized box dimensions of the convoluted measures. The generalized box dimensions of the convolution of Cantor sets with weights can be calculated analytically for certain parameter ranges and illustrate effects we also encounter in the case of the measure of the local magnetization. Returning to the study of this measure we apply the general inequalities and present numerical approximations of the D_q-spectrum. For the first time we are able to obtain results on multifractal properties of a physical quantity in the one-dimensional random-field Ising model which in principle could be measured experimentally. The numerically generated probability densities for the local magnetization show impressively the gradual transition from a monomodal to a bimodal distribution for growing random field strength h.Comment: An error in figure 1 was corrected, small additions were made to the introduction and the conclusions, some typos were corrected, 24 pages, LaTeX2e, 9 figure

    A 2.5 ns 8 x 8-b parallel multiplier using 0.5 μm GaAs/GaAlAs heterostructure field effect transistors

    Get PDF
    To increase performance of GaAs LSI digital circuits, a 0.5 μm recessed gate process has been developed and utilized for an 8x8-b parallel multiplier. The chip contains about 3000 heterostructure field effect transistors and has a power consumption of 1.5 W. The best results of the maximum multiplication time measured were below 2.5 nsec

    An 18-34-GHz dynamic frequency divider based on 0.2-μm AlGaAs/GaAs/AlGaAs quantum-well transistors

    Get PDF
    The design and performance of a dynamic frequency divider was presented. This digital IC demonstrates the ability of the authors' AlGaAs/GaAs/AlGaAs quantum-well FETs with gate lengths of 0.2 μm. Stable operation was achieved in the frequency range from 18 GHz up to 34 GHz with a power consumption of 250 mW. To the authors' knowledge, this is the best result ever reported for HEMT circuits, and is similar to the frequency limit achieved by use of AlGaAs/GaAs HBTs

    7.5 Gb/s monolithically integrated clock recovery circuit using PLL and 0.3-μm gate length quantum well HEMT's

    Get PDF
    A monolithically integrated clock recovery (CR) circuit making use of the phase-locked loop (PLL) circuit technique and enhancement/depletion AlGaAs/GaAs quantum well-high electron mobility transistors (QW-HEMT's) with gate lengths of 0.3 μm has been realized. A novel preprocessing circuit was used. In the PLL a fully-balanced varactorless VCO was applied. The VCO has a center oscillating frequency of about 7.7 GHz and a tuning range greater than 500 MHz. A satisfactory clock signal has been obtained at a bit rate of about 7.5 Gb/s. The power consumption is less than 200 mW at a supply voltage of -5 V

    7.5 Gb/s monolithically integrated clock recovery using PLL and 0.3 μM gate length quantum well HEMTs

    Get PDF
    A monolithically integrated clock recovery (CR) circuit making use of the phase-locked loop (PLL) circuit technique and enhancement/depletion AlGaAs/GaAs quantum well high electron mobility transistors (QW-HEMTs) with gate lengths of 0.3 μm has been realized. A novel preprocessing circuit was used. In the PLL a fully-balanced varactorless VCO has been introduced. The VCO has a centre oscillating frequency of about 7.5 GHz and a tuning range greater than 500 MHz. A satisfactory clock signal has been obtained at the bit rate of about 7.5 Gb/s. The power consumption is less than 200 mW at the supply voltage of -5 V

    18 Gbit/s monolithically integrated 2:1 multiplexer and laser driving using 0.3 μm gate length quantum well HEMTs

    Get PDF
    A monolithically integrated 2:1 multiplexer and laser diode driver was developed, using AlGaAs quantum well HEMTs of 0.3 μm gate length. The DC and modulation current is 25 and 45 mA, respectively. Open eye diagrams were measured at bit rates up to 18 Gbit/s with pseudorandom data streams

    Integrated laser-diode voltage driver for 20-Gb/s optical systems using 0.3- μm gate length quantum-well HEMT's

    Get PDF
    An integrated laser-diode voltage driver (LDVD) making use of enhancement/depletion AlGaAs-GaAs quantum-well high electron mobility transistors (QW HEMTs) with gate lengths of 0.3 μm has been developed. Its large signal bandwidth is 12 GHz. Eye diagrams of the output signal at bit rates up to 8 Gb/s show an opening similar to that of the input signal. Supporting material is given indicating that the LDVD might operate at bit rates up to 20 Gb/s. The maximum output current is over 90 mA; the maximum modulation voltage of 800 mV corresponds to 40-mA modulation current for a laser diode with 20-Ω dynamic resistance. The power consumption is less than 500 mW

    Orbits and phase transitions in the multifractal spectrum

    Full text link
    We consider the one dimensional classical Ising model in a symmetric dichotomous random field. The problem is reduced to a random iterated function system for an effective field. The D_q-spectrum of the invariant measure of this effective field exhibits a sharp drop of all D_q with q < 0 at some critical strength of the random field. We introduce the concept of orbits which naturally group the points of the support of the invariant measure. We then show that the pointwise dimension at all points of an orbit has the same value and calculate it for a class of periodic orbits and their so-called offshoots as well as for generic orbits in the non-overlapping case. The sharp drop in the D_q-spectrum is analytically explained by a drastic change of the scaling properties of the measure near the points of a certain periodic orbit at a critical strength of the random field which is explicitly given. A similar drastic change near the points of a special family of periodic orbits explains a second, hitherto unnoticed transition in the D_q-spectrum. As it turns out, a decisive role in this mechanism is played by a specific offshoot. We furthermore give rigorous upper and/or lower bounds on all D_q in a wide parameter range. In most cases the numerically obtained D_q coincide with either the upper or the lower bound. The results in this paper are relevant for the understanding of random iterated function systems in the case of moderate overlap in which periodic orbits with weak singularity can play a decisive role.Comment: The article has been completely rewritten; the title has changed; a section about the typical pointwise dimension as well as several references and remarks about more general systems have been added; to appear in J. Phys. A; 25 pages, 11 figures, LaTeX2
    corecore